What is Wellness Pilipinas?

The Philippines' response to the call of World Health Organization (WHO) in 2009
to lessen the augment of Lifestyle Diseases of stroke, cancer, diabetes, etc, and the country's compliance to United Nations Climate Change Peace Building Campaign in 2007. Wellness Pilipinas! was conceived by "Wellness for Peace" Author, Public Speaker & former Peace Ambassador Zara Jane Juan. It consists of pep talks, workshops, symposiums & fora meant to achieve wellness in mind, body, spirit & economics as tools for peace & nation-building. Wellness Pilipinas aired as a live TV show at GNN via G-SAT Asia from 2009-2010 supported by private and public corporations

Innovating Peace by Amb Zara Jane Juan

Innovating Peace by Amb Zara Jane Juan
Wellness for Peace Education

WELLNESS PILIPINAS INTERNATIONAL

Translate

Friday, July 26, 2019

WHO: Dioxins and their effects on human health

Dioxins are a group of chemically-related compounds that are persistent environmental pollutants (POPs).

Dioxins are found throughout the world in the environment and they accumulate in the food chain, mainly in the fatty tissue of animals.
More than 90% of human exposure is through food, mainly meat and dairy products, fish and shellfish. Many national authorities have programmes in place to monitor the food supply.
Dioxins are highly toxic and can cause reproductive and developmental problems, damage the immune system, interfere with hormones and also cause cancer.
Due to the omnipresence of dioxins, all people have background exposure, which is not expected to affect human health. However, due to the highly toxic potential, efforts need to be undertaken to reduce current background exposure.
Prevention or reduction of human exposure is best done via source-directed measures, i.e. strict control of industrial processes to reduce formation of dioxins.

Background

Dioxins are environmental pollutants. They belong to the so-called “dirty dozen” - a group of dangerous chemicals known as persistent organic pollutants (POPs). Dioxins are of concern because of their highly toxic potential. Experiments have shown they affect a number of organs and systems.

Once dioxins enter the body, they last a long time because of their chemical stability and their ability to be absorbed by fat tissue, where they are then stored in the body. Their half-life in the body is estimated to be 7 to 11 years. In the environment, dioxins tend to accumulate in the food chain. The higher an animal is in the food chain, the higher the concentration of dioxins.

The chemical name for dioxin is: 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD). The name "dioxins" is often used for the family of structurally and chemically related polychlorinated dibenzo para dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Certain dioxin-like polychlorinated biphenyls (PCBs) with similar toxic properties are also included under the term “dioxins”. Some 419 types of dioxin-related compounds have been identified but only about 30 of these are considered to have significant toxicity, with TCDD being the most toxic.
Sources of dioxin contamination

Dioxins are mainly by-products of industrial processes but can also result from natural processes, such as volcanic eruptions and forest fires. Dioxins are unwanted by-products of a wide range of manufacturing processes including smelting, chlorine bleaching of paper pulp and the manufacturing of some herbicides and pesticides. In terms of dioxin release into the environment, uncontrolled waste incinerators (solid waste and hospital waste) are often the worst culprits, due to incomplete burning. Technology is available that allows for controlled waste incineration with low dioxin emissions.

Although formation of dioxins is local, environmental distribution is global. Dioxins are found throughout the world in the environment. The highest levels of these compounds are found in some soils, sediments and food, especially dairy products, meat, fish and shellfish. Very low levels are found in plants, water and air.

Extensive stores of PCB-based waste industrial oils, many with high levels of PCDFs, exist throughout the world. Long-term storage and improper disposal of this material may result in dioxin release into the environment and the contamination of human and animal food supplies. PCB-based waste is not easily disposed of without contamination of the environment and human populations. Such material needs to be treated as hazardous waste and is best destroyed by high temperature incineration in specialised facilities.
Dioxin contamination incidents

Many countries monitor their food supply for dioxins. This has led to early detection of contamination and has often prevented impact on a larger scale. In many instances dioxin contamination is introduced via contaminated animal feed, e.g. incidences of increased dioxin levels in milk or animal feed were traced back to clay, fat or citrus pulp pellets used in the production of the animal feed,

Some dioxin contamination events have been more significant, with broader implications in many countries.

In late 2008, Ireland recalled many tons of pork meat and pork products when up to 200 times the safe limit of dioxins were detected in samples of pork. This led to one of the largest food recalls related to a chemical contamination. Risk assessments performed by Ireland indicated no public health concern. The contamination was traced back to contaminated feed.

In 1999, high levels of dioxins were found in poultry and eggs from Belgium. Subsequently, dioxin-contaminated animal-based food (poultry, eggs, pork) were detected in several other countries. The cause was traced to animal feed contaminated with illegally disposed PCB-based waste industrial oil.

Large amounts of dioxins were released in a serious accident at a chemical factory in Seveso, Italy, in 1976. A cloud of toxic chemicals, including TCDD, was released into the air and eventually contaminated an area of 15 square kilometres where 37 000 people lived.

Extensive studies in the affected population are continuing to determine the long-term human health effects from this incident.

TCDD has also been extensively studied for health effects linked to its presence as a contaminant in some batches of the herbicide Agent Orange, which was used as a defoliant during the Vietnam War. A link to certain types of cancers and also to diabetes is still being investigated.

Although all countries can be affected, most contamination cases have been reported in industrialized countries where adequate food contamination monitoring, greater awareness of the hazard and better regulatory controls are available for the detection of dioxin problems.

A few cases of intentional human poisoning have also been reported. The most notable incident is the 2004 case of Viktor Yushchenko, President of the Ukraine, whose face was disfigured by chloracne.
Effects of dioxins on human health

Short-term exposure of humans to high levels of dioxins may result in skin lesions, such as chloracne and patchy darkening of the skin, and altered liver function. Long-term exposure is linked to impairment of the immune system, the developing nervous system, the endocrine system and reproductive functions.

Chronic exposure of animals to dioxins has resulted in several types of cancer. TCDD was evaluated by the WHO’s International Agency for Research on Cancer (IARC) in 1997 and 2012. Based on animal data and on human epidemiology data, TCDD was classified by IARC as a "known human carcinogen”. However, TCDD does not affect genetic material and there is a level of exposure below which cancer risk would be negligible.

Due to the omnipresence of dioxins, all people have background exposure and a certain level of dioxins in the body, leading to the so-called body burden. Current normal background exposure is not expected to affect human health on average. However, due to the high toxic potential of this class of compounds, efforts need to be undertaken to reduce current background exposure.
Sensitive groups

The developing fetus is most sensitive to dioxin exposure. Newborn, with rapidly developing organ systems, may also be more vulnerable to certain effects. Some people or groups of people may be exposed to higher levels of dioxins because of their diet (such as high consumers of fish in certain parts of the world) or their occupation (such as workers in the pulp and paper industry, in incineration plants, and at hazardous waste sites).
Prevention and control of dioxin exposure

Proper incineration of contaminated material is the best available method of preventing and controlling exposure to dioxins. It can also destroy PCB-based waste oils. The incineration process requires high temperatures, over 850°C. For the destruction of large amounts of contaminated material, even higher temperatures - 1000°C or more - are required.

Prevention or reduction of human exposure is best done via source-directed measures, i.e. strict control of industrial processes to reduce formation of dioxins as much as possible. This is the responsibility of national governments. The Codex Alimentarius Commission adopted a Code of Practice for Source Directed Measures to Reduce Contamination of Foods with Chemicals (CAC/RCP 49-2001) in 2001. Later in 2006 a Code of Practice for the Prevention and Reduction of Dioxin and Dioxin-like PCB Contamination in Food and Feeds (CAC/RCP 62-2006) was adopted.

More than 90% of human exposure to dioxins is through the food supply, mainly meat and dairy products, fish and shellfish. Therefore, protecting the food supply is critical. In addition to source-directed measures to reduce dioxin emissions, secondary contamination of the food supply needs to be avoided throughout the food chain. Good controls and practices during primary production, processing, distribution and sale are all essential in the production of safe food.

As indicated through the examples listed above, contaminated animal feed is often the root-cause of food contamination.

Food and feed contamination monitoring systems must be in place to ensure that tolerance levels are not exceeded. It is the responsibility of feed and food producers to assure safe raw materials and safe processes during production, and it is the role of national governments to monitor the safety of food supply and to take action to protect public health. When contamination is suspected, countries should have contingency plans to identify, detain and dispose of contaminated feed and food. The affected population should be examined in terms of exposure (for example, measuring the contaminants in blood or human milk) and effects (for example, clinical surveillance to detect signs of ill health).
What should consumers do to reduce their risk of exposure?

Trimming fat from meat and consuming low fat dairy products may decrease the exposure to dioxin compounds. Also, a balanced diet (including adequate amounts of fruits, vegetables and cereals) will help to avoid excessive exposure from a single source. This is a long-term strategy to reduce body burdens and is probably most relevant for girls and young women to reduce exposure of the developing fetus and when breastfeeding infants later on in life. However, the possibility for consumers to reduce their own exposure is somewhat limited.
What does it take to identify and measure dioxins in the environment and food?

The quantitative chemical analysis of dioxins requires sophisticated methods that are available only in a limited number of laboratories around the world. The analysis costs are very high and vary according to the type of sample, but range from over US$ 1000 for the analysis of a single biological sample to several thousand US dollars for the comprehensive assessment of release from a waste incinerator.

Increasingly, biological (cell- or antibody) -based screening methods are being developed, and theuse of such methods for food and feed samples is increasingly being validated. Such screening methods allow more analyses at a lower cost, and in case of a positive screening test, confirmation of results must be carried out by more complex chemical analysis.
WHO activities related to dioxins

WHO published in 2015 for the first time estimates of the global burden of foodborne disease. Dioxins’ effects on fertility and on thyroid function were considered in this context, and only considering these 2 endpoints shows that this exposure can contribute significantly to foodborne disease burden in some parts of the world.

Reducing dioxin exposure is an important public health goal for disease reduction. To provide guidance on acceptable levels of exposure, WHO has held a series of expert meetings to determine a tolerable intake of dioxins.

In 2001, the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA) performed an updated comprehensive risk assessment of PCDDs, PCDFs, and “dioxin-like” PCBs.

In order to assess long- or short-term risks to health due to these substances, total or average intake should be assessed over months, and the tolerable intake should be assessed over a period of at least 1 month. The experts established a provisional tolerable monthly intake (PTMI) of 70 picogram/kg per month. This level is the amount of dioxins that can be ingested over lifetime without detectable health effects.

WHO, in collaboration with FAO, through the Codex Alimentarius Commission, has established a ‘Code of Practice for the Prevention and Reduction of Dioxin and Dioxin-like PCB Contamination in Foods and Feed’. This document gives guidance to national and regional authorities on preventive measures.

WHO is also responsible for the Global Environment Monitoring System’s Food Contamination Monitoring and Assessment Programme. Commonly known as GEMS/Food, the programme provides information on levels and trends of contaminants in food through its network of participating laboratories in over 50 countries around the world. Dioxins are included in this monitoring programme.

WHO also conducted periodic studies on levels of dioxins in human milk. These studies provide an assessment of human exposure to dioxins from all sources. Recent exposure data indicate that measures introduced to control dioxin release in a number of developed countries have resulted in a substantial reduction in exposure over the past 2 decades. Data from developing countries are incomplete and do not allow yet a time-trend analysis.

WHO is continuing these studies in collaboration with the United Nations Environmental Programme (UNEP), in the context of the ‘Stockholm Convention’, an international agreement to reduce emissions of certain persistent organic pollutants (POPs), including dioxins. A number of actions are being considered to reduce the production of dioxins during incineration and manufacturing processes. WHO and UNEP are undertaking global breast milk surveys, including in many developing countries, to monitor trends in dioxin contamination across the globe and the effectiveness of measures implemented under the Stockholm Convention.

Dioxins occur as a complex mixture in the environment and in food. In order to assess the potential risk of the whole mixture, the concept of toxic equivalence has been applied to this group of contaminants.

WHO has established and regularly re-evaluated toxic equivalency factors (TEFs) for dioxins and related compounds through expert consultations. WHO-TEF values have been established which apply to humans, mammals, birds and fish.

SCHOLARSHIPS, INTERNSHIPS AND ONLINE COURSES

Best International Scholarships at Harvard University
Do you want to study with an international scholarship program at Harvard? Check out our complete guide to get a funding opportunity for your study.
Application Deadline: Varies according to programs
Apply Now

Victoria University of Wellington Study Abroad Scholarship in New Zealand
Victoria University of Wellington
Application Deadline: December 1, 2019
Apply Now

Saint Michael's College International Scholarships in the USA, 2019
St. Michael’s College
Application Deadline: November 7, 2019
Apply Now

Radcliffe Institute Fellowships at Harvard University in USA, 2019
Radcliffe Institute for Advanced Study of the Harvard
Application Deadline: September 12, 2019
Apply Now

Birmingham City University Undergraduate International Scholarships in UK, 2019
Birmingham City University
Application Deadline: Applications are open
Apply Now

AAI One World Programme for Developing Countries in Austria, 2019-2020
Afro Asian Institute Salzburg
Application Deadline: July 31, 2019
Apply Now

National Chiao Tung University International Student Scholarship in Taiwan, 2019
National Chiao Tung University
Application Deadline: December 31, 2019
Apply Now

University of Hertfordshire Vice-Chancellor’s Scholarships for International Students in UK, 2019-2020
University of Hertfordshire
Application Deadline: October 4, 2019
Apply Now

NCKU Distinguished International Student Scholarship in Taiwan, 2019
National Cheng Kung University
Application Deadline: October 10, 2019
Apply Now

LCBS MBA Scholarships for International Students in the UK, 2019-2020
Leicester Castle Business School at De Montfort University
Application Deadline: July 31, 2019
Apply Now

Business School Fully-Funded PhD Studentships for UK and EU Students, 2019
Brunel University London
Application Deadline: July 31, 2019
Apply Now

Cardiff University International Foundation Programme Scholarships in UK, 2019
Cardiff University
Application Deadline: July 31, 2019
Apply Now

Fully Funded PhD Positions for International Students at Scuola Normale Superiore in Italy, 2019
Scuola Normale Superiore in Italy
Application Deadline: August 29, 2019
Apply Now

SAT Score May Become Optional for International Students
Several International Universities and the colleges have made the SAT or ACT optional for International Students.
Read More

50 Engineering International Undergraduate Financial Aid in Australia, 2019-2020
Monash University
Application Deadline: Open
Apply Now

Professor Colin Eaborn Chemistry Scholarship for International Students in the UK, 2019
University of Sussex
Application Deadline: September 30, 2019
Apply Now

Frank and Doris Bateson Memorial Graduate International Scholarship in New Zealand
University of Canterbury
Application Deadline: October 15, 2019
Apply Now

The Embassy of the United States Friends of Fulbright Scholarships for Citizens of Argentina
Embassy of the United States
Application Deadline: August 5, 2019
Apply Now

CSC University of Melbourne PhD Scholarship in Australia, 2019-2020
University of Melbourne
Application Deadline: January 25, 2020
Apply Now

PhD Positions for International Students at the University of Perugia in Italy, 2019-2020
University of Perugia
Application Deadline: July 31, 2019
Apply Now

Fulbright-QMUL Postgraduate Award for US Students in the UK, 2019
Queen Mary University of London
Application Deadline: October 8, 2019
Apply Now

BIF Travel Grants for European or Non-European Citizens in Germany, 2019
Boehringer Ingelheim Fonds (BIF)
Application Deadline: Applications are open
Apply Now

Monash University MMG Engineering Leadership Scholarship for International Students in Australia
Monash University
Application Deadline: November 6, 2019
Apply Now

Freigeist Fellowships for International Students in Germany, 2019
Volkswagen Foundation
Application Deadline: October 10, 2019
Apply Now

What Financial Preparations are Needed Before Studying Abroad?
Studying abroad has never been easy for students. Check out our article which describes the preparation that a student needs to take for studying abroad.
Read More

University of Queensland School of Chemistry & Molecular Biosciences Indian Scholarship in Australia
University of Queensland
Application Deadline: October 31, 2019
Apply Now

European Research Consortium for Informatics and Mathematics (ERCIM) International Fellowship Programme in Europe, 2019
European Research Consortium for Informatics and Mathematics (ERCIM)
Application Deadline: September 30, 2019
Apply Now

University of Canterbury Robert Bell Travelling Scholarship in Journalism for International Students
University of Canterbury
Application Deadline: November 01, 2019
Apply Now

Tan Sri Lee Loy Seng Foundation Scholarships for Malaysian Students, 2019
Tunku Abdul Rahman University College (TAR UC)
Application Deadline: October 14, 2019
Apply Now

Sugar Industry Postgraduate Research Scholarships in Australia, 2019
Sugar Research Australia Ltd
Application Deadline: October 31, 2019
Apply Now

Confused About Studying Abroad? Get Admissions Help at FreeEducator.com
Confused about studying abroad? Need help? Contact now for a free consultation on admissions, scholarships, and jobs.
Contact Us Now

Thursday, July 18, 2019

20 million children worldwide – more than 1 in 10 – missed out on lifesaving vaccines such as measles, diphtheria and tetanus in 2018, according to new data from WHO and UNICEF

Globally, since 2010, vaccination coverage with three doses of diphtheria, tetanus and pertussis (DTP3) and one dose of the measles vaccine has stalled at around 86 percent. While high, this is not sufficient. 95 percent coverage is needed – globally, across countries, and communities - to protect against outbreaks of vaccine-preventable diseases.

“Vaccines are one of our most important tools for preventing outbreaks and keeping the world safe,” said Dr Tedros Adhanom Ghebreyesus, Director-General of the World Health Organization. “While most children today are being vaccinated, far too many are left behind. Unacceptably, it’s often those who are most at risk– the poorest, the most marginalized, those touched by conflict or forced from their homes - who are persistently missed.”

Most unvaccinated children live in the poorest countries, and are disproportionately in fragile or conflict-affected states. Almost half are in just 16 countries - Afghanistan, the Central African Republic, Chad, Democratic Republic of the Congo (DRC), Ethiopia, Haiti, Iraq, Mali, Niger, Nigeria, Pakistan, Somalia, South Sudan, Sudan, Syria and Yemen.

If these children do get sick, they are at risk of the severest health consequences, and least likely to access lifesaving treatment and care.
Measles outbreaks reveal entrenched gaps in coverage, often over many years

Stark disparities in vaccine access persist across and within countries of all income levels. This has resulted in devastating measles outbreaks in many parts of the world – including countries that have high overall vaccination rates.

In 2018, almost 350,000 measles cases were reported globally, more than doubling from 2017.

“Measles is a real time indicator of where we have more work to do to fight preventable diseases,” said Henrietta Fore, UNICEF’s Executive Director. “Because measles is so contagious, an outbreak points to communities that are missing out on vaccines due to access, costs or, in some places, complacency. We have to exhaust every effort to immunize every child.” 

Ten Countries With Highest Reported Incidence Rate Of Measles Cases (2018) Coverage With Measles First Dose (2010) Coverage With Measles First Dose (2018) 

Ukraine 56 91
Democratic Republic of the Congo 74 80
Madagascar 66 62
Liberia 65 91
Somalia 46 46
Serbia 95 92
Georgia 94 98
Albania 99 96
Yemen 68 64
Romania 95 90


Ukraine leads a varied list of countries with the highest reported incidence rate of measles in 2018. While the country has now managed to vaccinate over 90 percent of its infants, coverage had been low for several years, leaving a large number of older children and adults at risk.

Several other countries with high incidence and high coverage have significant groups of people who have missed the measles vaccine in the past. This shows how low coverage over time or discrete communities of unvaccinated people can spark deadly outbreaks.

Human papillomavirus (HPV) vaccine coverage data available for the first time

For the first time, there is also data on the coverage of human papillomavirus (HPV) vaccine, which protects girls against cervical cancer later in life. As of 2018, 90 countries – home to 1 in 3 girls worldwide - had introduced the HPV vaccine into their national programmes. Just 13 of these are lower-income countries. This leaves those most at risk of the devastating impacts of cervical cancer still least likely to have access to the vaccine.

Together with partners like Gavi, the Vaccine Alliance and the Measles & Rubella Initiative, WHO and UNICEF are supporting countries to strengthen their immunization systems and outbreak response, including by vaccinating all children with routine immunization, conducting emergency campaigns, and training and equipping health workers as an essential part of quality primary healthcare.

Since 2000, WHO and UNICEF jointly produce national immunization coverage estimates for Member States on an annual basis. In addition to producing the immunization coverage estimates for 2018, the WHO and UNICEF estimation process revises the entire historical series of immunization data with the latest available information. The 2018 revision covers 39 years of coverage estimates, from 1980 to 2018. DTP3 coverage is used as an indicator to assess the proportion of children vaccinated and is calculated for children under one year of age. The estimated number of vaccinated children are calculated using population data provided by the 2019 World Population Prospects (WPP) from the UN.

20 million children miss out on lifesaving measles, diphtheria and tetanus vaccines in 2018

15 July 2019 
News release
 
New York/Geneva

Thursday, July 4, 2019

Emmanuel Macron, President of the French Republic and Dr Tedros Adhanom Ghebreyesus, WHO Director-General met at WHO Headquarters in Geneva. They signed a Declaration of Intent to establish the WHO Academy that will revolutionize lifelong learning in health

The Academy aims to reach millions of people with innovative learning via a state-of-the-art digital learning experience platform at a campus in Lyon and embedded in the six WHO regions. The WHO Academy Lyon hub will feature high-tech learning environments, a world-class health emergencies simulation centre and collaboration spaces for learning co-design, research and innovation.

The Academy will bring together adult learning science, behavioural science and cutting-edge learning technologies such as artificial intelligence and virtual reality with WHO’s norms, standards and evidence to deliver high-impact accredited and tailored multilingual learning to meet diverse needs.

The Academy will be open to a wide range of multisectoral stakeholders that can influence health, including leaders, educators, researchers, health workers, WHO staff and the broader public. It will be run as an internal WHO Division, and the Organization will ensure strong coordination and collaboration with all WHO Member States, thereby optimizing the learning assistance provided to all. The Academy will also harness the strength of the WHO’s partnerships, experts, collaborating centres and networks.

The overall goal is to support the learning and development needs of WHO staff and stakeholders to progress towards WHO’s “triple billion” goal: ensuring that by 2023, an additional 1 billion people benefit from universal health coverage; 1 billion more are afforded better protection in health emergencies, and 1 billion more enjoy improved health and wellbeing.https://www.who.int/news-room/detail/11-06-2019-collaboration-between-france-and-who-to-realize-the-vision-of-the-who-academy

#ASEAN2017:

#ASEAN2017:
Presidential Communications Operations Office – Committee on Media Affairs and Strategic Communications (PCOO – CMASC) in partnership w/ Asia Society Philippines & Asian Institute of Management (AIM) hosted the ASEAN 2017 Dialogues held 11 July 2017 at AIM, Makati, Philippines. Attending the dialogue is Amb.Zara Jane Juan, Convener , Climate Change Peace Building for United Nations Sustainable Development Goals (UNDSG) of sailing for peace United Nation's International Day of Peace Vigil MALUSOG ANG PINOY! United Nations Friends Photo Credit: Aloy Menez

Senator Angara with Ambassador Zara Jane Juan

Senator Angara with Ambassador Zara Jane Juan
@NCCA